Asymptotics and Bootstrap for Random-Effects Panel Data Transformation Models∗

نویسندگان

  • Liangjun Su
  • Zhenlin Yang
چکیده

This paper investigates the asymptotic properties of quasi-maximum likelihood (QML) estimators for random-effects panel data transformation models where both the response and (some of) the covariates are subject to transformations for inducing normality, flexible functional form, homoskedasticity, and simple model structure. We develop a QML-type procedure for model estimation and inference. We prove the consistency and asymptotic normality of the QML estimators, and propose a simple bootstrap procedure that leads to a robust estimate of the variance-covariance (VC) matrix. Monte Carlo results reveal that the QML estimators perform well in finite samples, and that the gains by using the robust VC matrix estimate for inference can be enormous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

QML Estimation of Dynamic Panel Data Models with Spatial Errors

We propose quasi maximum likelihood (QML) estimation of dynamic panel models with spatial errors when the cross-sectional dimension n is large and the time dimension T is fixed. We consider both the random effects and fixed effects models and derive the limiting distributions of the QML estimators under different assumptions on the initial observations. We propose a residual-based bootstrap met...

متن کامل

Testing for random effects in panel models with spatially correlated disturbances

In the empirical analysis of panel data the Breusch Pagan statistic has become a standard tool to infer on unobserved heterogeneity over the cross section. Put differently, the test statistic is central to discriminate between the pooled regression and the random effects model. Conditional versions of the test statistic have been provided to immunize inference on unobserved heterogeneity agains...

متن کامل

New Technical Efficiency Estimates with Improved Bootstrap Confidence Interval Coverage

Bootstrap confidence intervals on fixed-effects efficiency estimates from finite-sample panel data models exhibit low coverage probabilities, because the traditional estimate involves a "max" operator that induces a finite sample bias. Attempts to bootstrap confidence intervals for the traditional estimate have focused on correcting bias. Rather than addressing this bias at the bootstrap stage,...

متن کامل

Spatial Correlation Testing for Errors in Panel Data Regression Model

To investigate the spatial error correlation in panel regression models, various statistical hypothesizes and testings have been proposed. This paper, within introduction to spatial panel data regression model, existence of spatial error correlation and random effects is investigated by a joint Lagrange Multiplier test, which simultaneously tests their existence. For this purpose, joint Lagrang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015